metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrzej Kochel

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland

Correspondence e-mail: andrzej@wchuwr.chem.uni.wroc.pl

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.006 Å R factor = 0.038 wR factor = 0.077 Data-to-parameter ratio = 30.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrakis(3-aminopyridine- κN^1)dioxorhenium(V) iodide 3-aminopyridine solvate dihydrate

The asymmetric unit of the title compound, $[ReO_2(C_5H_6-N_2)_4]I\cdot C_5H_6N_2\cdot 2H_2O$, contains half each of two tetrakis(3-aminopyridine)dioxorhenium(V) cations, an I^- anion, an uncoordinated 3-aminopyridine molecule and two water molecules. Each cation has a centre of inversion at the Re atom. The crystal structure is stabilized by $O-H\cdots I$, $O-H\cdots O$, $N-H\cdots O$, $N-H\cdots I$ and $C-H\cdots O$ hydrogen bonds.

Comment

The asymmetric unit of the title compound, (I), (Fig. 1) contains half each of two independent $[\text{ReO}_2(\text{C}_5\text{H}_6\text{N}_2)_4]^+$ cations, an I⁻ anion, an uncoordinated 3-amino-pyridine molecule and two water molecules. Each cation has a centre of inversion at the Re atom. The geometry around both Re atoms is octahedral with the four N atoms of the 3-amino-pyridine molecules and the Re atom defining the equatorial plane. The Re–O distances (Table 1) are similar to those found in other oxo rhenium(V)-containing compounds (Lock & Turner, 1978; Ram & Hupp, 1991; Luck & O'Neill, 2001).

The water molecules, I⁻anions and 3-aminopyridinie molecules form intermolecular hydrogen bonds (Table 2), giving a three-dimensional structure The shortest Re···Re distances in (I) are 6.889 (3) Å for Re1···Re1ⁱ [symmetry code: (i) x - 1, y, z] and 9.232 (5) Å for Re1···Re2.

Experimental

A mixture of $(NH_4)_2ReI_6$ (0.36 g; Watt & Thompson, 1963), 3aminopyridine (0.40 g) and a solution of HI (1 ml) in water (50 ml) was stirred for 5 h at a temperature of 333 K. The color of the reaction mixture changed from dark violet-red to yellow-brown. After reaction, the mixture was cooled and the first crystalline product was obtained. X-ray quality crystals of (I) were obtained by recrystallization of the crude product from water at room temperature.

© 2006 International Union of Crystallography All rights reserved Received 6 June 2006 Accepted 26 June 2006

Figure 1

View of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms and C-bound H atoms omitted for clarity). Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) -1 - x, -y, 1 - z.]

Crystal data

 $V = 1522.36 (16) \text{ Å}^3$ $[ReO_2(C_5H_6N_2)_4]I{\cdot}C_5H_6N_2{\cdot}2H_2O$ $M_r = 851.72$ Z = 2Triclinic, $P\overline{1}$ $D_x = 1.858 \text{ Mg m}^{-3}$ a = 9.4860 (6) Å Mo $K\alpha$ radiation b = 13.2425 (8) Å $\mu = 5.05 \text{ mm}^{-1}$ c = 13.4771 (8) Å T = 100 (2) K $\alpha = 81.447 (5)^{\circ}$ Prism, red $\beta = 70.786 (5)^{\circ}$ $0.08 \times 0.08 \times 0.04~\text{mm}$ $\gamma = 72.502 (5)^{\circ}$

Data collection

Kuma KM4-CCD diffractometer ω scans Absorption correction: numerical (*CrysAlis RED*; Oxford Diffraction, 2004) $T_{min} = 0.681, T_{max} = 0.826$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.077$ S = 0.9312818 reflections 427 parameters

Table 1

Selected bond lengths (Å).

Re1-O1	1.761 (2)	Re2-O2	1.771 (2)
Re1-N2	2.144 (3)	Re2-N4	2.145 (3)
Re1-N1	2.151 (3)	Re2-N3	2.160 (3)

27143 measured reflections 12818 independent reflections

 $\begin{aligned} R_{\rm int} &= 0.043\\ \theta_{\rm max} &= 36.6^\circ \end{aligned}$

refinement

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 4.35 ~{\rm e}~{\rm \AA}^{-3} \end{array}$

 $\Delta \rho_{\rm min} = -2.18 \text{ e } \text{\AA}^{-3}$

8799 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

 $w = 1/[\sigma^2(F_o^2) + (0.0336P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

independent and constrained

l able 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H1A\cdots I1$	0.98 (3)	2.62 (4)	3.558 (3)	162 (5)
$O3-H2A\cdots O1$	0.98 (4)	1.81 (5)	2.775 (3)	167 (6)
$O4-H3A\cdots N5$	0.97 (4)	1.85 (4)	2.801 (5)	164 (4)
$O4-H4A\cdots O3$	0.96 (5)	1.89 (4)	2.835 (4)	168 (4)
$N22 - H6A \cdot \cdot \cdot O4^{i}$	0.88 (4)	2.13 (4)	2.996 (4)	167 (4)
$N21 - H8A \cdot \cdot \cdot I1^{ii}$	0.82(5)	2.93 (6)	3.717 (4)	162 (5)
$N24-H10A\cdots O4^{i}$	0.88 (6)	2.12 (6)	2.999 (5)	174 (5)
$N22 - H11A \cdot \cdot \cdot O2^{iii}$	0.81(5)	2.34 (5)	3.099 (5)	156 (5)
$N21 - H12A \cdots I1$	0.88 (6)	2.97 (6)	3.825 (4)	163 (4)
N36-H13A···N21	0.98 (4)	2.37 (5)	3.320 (6)	163 (4)
$N36-H14A\cdots I1^{ii}$	0.99 (4)	3.00 (4)	3.772 (4)	135 (3)
C6-H6···O1	0.94	2.39	2.918 (4)	114
C10−H10···O1 ^{iv}	0.94	2.34	2.886 (4)	115
$C15-H15\cdots O2^{v}$	0.95	2.44	2.955 (5)	113
$C16-H16\cdots O2^{v}$	0.95	2.36	2.894 (5)	114
C20-H20···O2	0.95	2.36	2.902 (4)	115

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z; (iii) -x, -y, -z + 1; (iv) -x, -y + 1, -z + 1; (v) -x - 1, -y, -z + 1.

The O– and N-bound H atoms were located in difference maps and their positions and $U_{\rm iso}({\rm H})$ values were freely refined. The C-bound H atoms were positioned geometrically (C–H = 0.95 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm carrier})$. The highest difference peak is 0.88 Å from I1 and the deepest difference hole is 0.55 Å from I1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2004); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2004); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXL97*.

References

Bruker (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Lock, C. J. L. & Turner, G. (1978). Acta Cryst. B34, 923-927.
- Luck, R. L. & O'Neill, R. S. (2001). *Polyhedron*, **20**, 773–782. Oxford Diffraction (2004). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

- Ram, M. S. & Hupp, J. T. (1991). *Inorg. Chem.* **30**, 130–133. Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.
- Watt, G. W. & Thompson, R. J. (1963). Inorg. Synth. 7, 190-192.