Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrzej Kochel

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland

Correspondence e-mail:
andrzej@wchuwr.chem.uni.wroc.pl

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.038$
$w R$ factor $=0.077$
Data-to-parameter ratio $=30.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetrakis(3-aminopyridine- κN^{1})dioxorhenium(V) iodide 3-aminopyridine solvate dihydrate

The asymmetric unit of the title compound, $\left[\mathrm{ReO}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6}\right.\right.$ $\left.\left.\mathrm{N}_{2}\right)_{4}\right] \cdot \mathrm{I} \cdot \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, contains half each of two tetrakis(3aminopyridine)dioxorhenium(V) cations, an I^{-}anion, an uncoordinated 3-aminopyridine molecule and two water molecules. Each cation has a centre of inversion at the Re atom. The crystal structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{I}, \mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The asymmetric unit of the title compound, (I), (Fig. 1) contains half each of two independent $\left[\mathrm{ReO}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right]^{+}$ cations, an I^{-}anion, an uncoordinated 3-amino-pyridine molecule and two water molecules. Each cation has a centre of inversion at the Re atom. The geometry around both Re atoms is octahedral with the four N atoms of the 3 -aminopyridine molecules and the Re atom defining the equatorial plane. The $\mathrm{Re}-\mathrm{O}$ distances (Table 1) are similar to those found in other oxo rhenium (V)-containing compounds (Lock \& Turner, 1978; Ram \& Hupp, 1991; Luck \& O'Neill, 2001).

(I)

The water molecules, I^{-}anions and 3-aminopyridinie molecules form intermolecular hydrogen bonds (Table 2), giving a three-dimensional structure The shortest Re..Re distances in (I) are 6.889 (3) \AA for $\operatorname{Re} 1 \cdots \operatorname{Re} 1^{\mathrm{i}}$ [symmetry code: (i) $x-1, y$, $z]$ and 9.232 (5) \AA for Re1 $\cdots \mathrm{Re} 2$.

Experimental

A mixture of $\left(\mathrm{NH}_{4}\right)_{2} \operatorname{ReI}_{6}(0.36 \mathrm{~g}$; Watt \& Thompson, 1963), 3aminopyridine $(0.40 \mathrm{~g})$ and a solution of $\mathrm{HI}(1 \mathrm{ml})$ in water $(50 \mathrm{ml})$ was stirred for 5 h at a temperature of 333 K . The color of the reaction mixture changed from dark violet-red to yellow-brown. After reaction, the mixture was cooled and the first crystalline product was obtained. X-ray quality crystals of (I) were obtained by recrystallization of the crude product from water at room temperature.

Received 6 June 2006
Accepted 26 June 2006

Figure 1
View of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms and C -bound H atoms omitted for clarity). Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $-1-x,-y, 1-z$.]

Crystal data

$\left[\mathrm{ReO}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right] \mathrm{I} \cdot \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=851.72$
Triclinic, $P \overline{1}$
$a=9.4860(6) \AA$
$b=13.2425$ (8) \AA
$c=13.4771$ (8) \AA
$\alpha=81.447(5)^{\circ}$
$\beta=70.786(5)^{\circ}$
$\gamma=72.502(5)^{\circ}$

Data collection

Kuma KM4-CCD diffractometer ω scans
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2004)
$T_{\text {min }}=0.681, T_{\text {max }}=0.826$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.077$
$S=0.93$
12818 reflections
427 parameters
$V=1522.36(16) \AA^{3}$
$Z=2$
$D_{x}=1.858 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=5.05 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Prism, red
$0.08 \times 0.08 \times 0.04 \mathrm{~mm}$

2743 measured reflections
12818 independent reflections
8799 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=36.6^{\circ}$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0336 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$ 。
$\Delta \rho_{\text {max }}=4.35 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-2.18 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected bond lengths (\AA).

Re1-O1	$1.761(2)$	$\mathrm{Re} 2-\mathrm{O} 2$	$1.771(2)$
$\mathrm{Re} 1-\mathrm{N} 2$	$2.144(3)$	$\mathrm{Re} 2-\mathrm{N} 4$	$2.145(3)$
Re1-N1	$2.151(3)$	$\mathrm{Re} 2-\mathrm{N} 3$	$2.160(3)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 1 A \cdots \mathrm{I} 1$	$0.98(3)$	$2.62(4)$	$3.558(3)$	$162(5)$
$\mathrm{O} 3-\mathrm{H} 2 A \cdots \mathrm{O} 1$	$0.98(4)$	$1.81(5)$	$2.775(3)$	$167(6)$
$\mathrm{O} 4-\mathrm{H} 3 A \cdots \mathrm{~N} 5$	$0.97(4)$	$1.85(4)$	$2.801(5)$	$164(4)$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 3$	$0.96(5)$	$1.89(4)$	$2.835(4)$	$168(4)$
$\mathrm{N} 22-\mathrm{H} 6 A \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.88(4)$	$2.13(4)$	$2.996(4)$	$167(4)$
$\mathrm{N} 21-\mathrm{H} 8 A \cdots \mathrm{I} 1^{\text {ii }}$	$0.82(5)$	$2.93(6)$	$3.717(4)$	$162(5)$
$\mathrm{N} 24-\mathrm{H} 10 A \cdots 4^{\mathrm{i}}$	$0.88(6)$	$2.12(6)$	$2.999(5)$	$174(5)$
$\mathrm{N} 22-\mathrm{H} 11 A \cdots \mathrm{O} 2^{\text {iii }}$	$0.81(5)$	$2.34(5)$	$3.099(5)$	$156(5)$
$\mathrm{N} 21-\mathrm{H} 12 A \cdots \mathrm{I} 1$	$0.88(6)$	$2.97(6)$	$3.825(4)$	$163(4)$
$\mathrm{N} 36-\mathrm{H} 13 A \cdots \mathrm{~N} 21$	$0.98(4)$	$2.37(5)$	$3.320(6)$	$163(4)$
$\mathrm{N} 36-\mathrm{H} 14 A \cdots \mathrm{I} 1^{\text {ii }}$	$0.99(4)$	$3.00(4)$	$3.772(4)$	$135(3)$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1$	0.94	2.39	$2.918(4)$	114
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1^{\text {iv }}$	0.94	2.34	$2.886(4)$	115
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 2^{\mathrm{v}}$	0.95	2.44	$2.955(5)$	113
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 2^{\mathrm{v}}$	0.95	2.36	$2.894(5)$	114
$\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{O} 2$	0.95	2.36	$2.902(4)$	115

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1,-z$; (iii) $-x,-y,-z+1$; (iv) $-x,-y+1,-z+1$; (v) $-x-1,-y,-z+1$.

The $\mathrm{O}-$ and N -bound H atoms were located in difference maps and their positions and $U_{\text {iso }}(\mathrm{H})$ values were freely refined. The C-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier). The highest difference peak is $0.88 \AA$ from I1 and the deepest difference hole is $0.55 \AA$ from I1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXL97.

References

Bruker (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Lock, C. J. L. \& Turner, G. (1978). Acta Cryst. B34, 923-927.
Luck, R. L. \& O'Neill, R. S. (2001). Polyhedron, 20, 773-782.
Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Ram, M. S. \& Hupp, J. T. (1991). Inorg. Chem. 30, 130-133.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Watt, G. W. \& Thompson, R. J. (1963). Inorg. Synth. 7, 190-192.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

